INTRODUCTION

The importance of bean (Phaseolus vulgaris L) as a crop yielding economic returns and as a valuable article of food needs no great emphasis. The increase in the yield of the crop, while eventually improving the economic status of the farmer, makes an increase in the overall production of vegetable protein for the community.

In this experiment which is a continuation of a previous one (3), the agronomic methods of spacing and fertilizer application of increasing yield per unit area have been studied.

REVIEW OF LITERATURE

Some of the literature available on the culture of beans was reviewed by Cockburn in his report of the experiment mentioned above. The variety he used, and which was used in this experiment, was Contender, an American variety which is harvested green, has purple flowers and a curved stringless pod round in cross-section.

Dwarf beans, like other field beans, will do well at low to moderately high altitudes, though fair yields have been obtained at Maricao (2600 ft) and Toro Negro (3300 ft) in Puerto Rico (2). They thrive in moderate rainfall and in a temperature range of 65 - 85°F.

Authorities generally agree that a heavy soil is more suitable to beans than a lighter one though a crop can be grown successfully in soils of both clayey and loamy textural groups (10) (11) well supplied with organic matter and adequately drained. Childers and his co-workers (2) mentioned that where irrigation is not available gardens in the West Indies are frequently planted in October when the rainy season is tapering off. If bean cultivation is undertaken throughout the year, however, some provision for irrigation with unpolluted water is essential. With overhead irrigation and good control of water, beans grow better in the