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Abstract

Bat rabies is an emerging disease of public health significance in the Americas. The Caribbean island of Trinidad experiences
periodic outbreaks within the livestock population. We performed molecular characterisation of Trinidad rabies virus (RABV)
and used a Bayesian phylogeographic approach to investigate the extent to which outbreaks are a result of in situ evolution
versus importation of virus from the nearby South American mainland. Trinidadian RABV sequences were confirmed as bat
variant and clustered with Desmodus rotundus (vampire bat) related sequences. They fell into two largely temporally defined
lineages designated Trinidad I and II. The Trinidad I lineage which included sequences from 1997–2000 (all but two of which
were from the northeast of the island) was most closely related to RABV from Ecuador (2005, 2007), French Guiana (1990)
and Venezuela (1993, 1994). Trinidad II comprised sequences from the southwest of the island, which clustered into two
groups: Trinidad IIa, which included one sequence each from 2000 and 2007, and Trinidad IIb including all 2010 sequences.
The Trinidad II sequences were most closely related to sequences from Brazil (1999, 2004) and Uruguay (2007, 2008).
Phylogeographic analyses support three separate RABV introductions from the mainland from which each of the three
Trinidadian lineages arose. The estimated dates for the introductions and subsequent lineage expansions suggest periods of
in situ evolution within Trinidad following each introduction. These data also indicate co-circulation of Trinidad lineage I and
IIa during 2000. In light of these findings and the likely vampire bat origin of Trinidadian RABV, further studies should be
conducted to investigate the relationship between RABV spatiotemporal dynamics and vampire bat population ecology, in
particular any movement between the mainland and Trinidad.
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Introduction

Rabies has been a well-known disease since ancient times, and is

thought to be the inspiration for mythical and superstitious beliefs

in numerous cultures [1,2]. It is historically one of the most

significant zoonotic diseases, a consequence of its near 100% case

fatality rate and ubiquitous global distribution [3,4]. Today, rabies

is considered a neglected disease and is of major public health

importance worldwide as both an emerging and re-emerging

disease [2,3,5]. The etiological agent is a single stranded negative-

sense RNA virus belonging to the family Rhabdoviridae, genus

Lyssavirus which consists of 12 species that are largely assigned into

two distinct phylogroups [6–8] with two further viruses awaiting

classification [9]. Rabies virus (RABV) belongs to phylogroup I

and is maintained as an enzootic agent in several mammalian

species within the orders Carnivora and Chiroptera with reservoir

host species differing among geographic regions [2,10]. RABV

perpetuated and transmitted by terrestrial mammals (Carnivora)

have a global circulation and are phylogenetically distinct from

those transmitted by bats (Chiroptera), which are restricted to the

Americas [6,11]. In the Americas, where RABV is the only known

lyssavirus species [12,13], based on molecular and antigenic typing

techniques bat-transmitted variants cluster into several distinct bat

species-associated lineages [3,10,11,14,15–17].

Rabies has been documented throughout the Americas includ-

ing several Caribbean islands [18], but the island of Trinidad

(which lies about 7 miles off the northeastern coast of South

America) is the only Caribbean island with vampire bat-

transmitted rabies [19]. The link between bats and human

paralytic rabies was established in 1931 in Trinidad [20,21] during

a historic multi-species rabies epidemic (1925–1937). This

epidemic recorded 73 human cases and the loss of thousands of

livestock animals [19,22,23]. Although no human rabies cases

associated with bats have been reported since 1937 [19,24], and
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the last reported case of canine transmitted human rabies occurred

in 1912 [24], there have been periodic rabies epizootics in the

livestock population [19,24,25], with the most recent significant

epizootic event occurring in 2010 [25].

Wright et al [26] previously suggested that RABV outbreaks in

Trinidad originate from Venezuela. This was based on phyloge-

netic analysis of nucleoprotein (N) gene fragments from six

Trinidadian RABV isolates of bovine origin which identified two

distinct lineages of bat RABV, both belonging to the South

American antigenic variant three (AVG 3) [27]. While this

scenario is plausible given the proximity of Trinidad to Venezuela,

the small sample size, limited time frame covered and the basic

phylogenetic analysis performed (UPGMA trees) [26] do not allow

robust conclusions to be drawn. In the current study we have used

a statistically robust Bayesian coalescent approach to investigate

the evolutionary dynamics of RABV in Trinidad and to reveal the

pattern of RABV gene flow between Trinidad and mainland

South America. Analyses were based on a data set of 183 partial N

gene sequences from the Americas, 37 of which were derived from

equine, caprine, ovine and bovine rabies cases in Trinidad

between 1997 and 2010.

Methods

Source of viruses
The thirty-seven (37) Trinidad RABV viruses were derived

from brain tissue collected from RABV positive livestock

(bovine, caprine, ovine and equine) between 1997 and 2010

under the national rabies surveillance program. All brain

samples were confirmed positive at the Veterinary Diagnostic

Laboratory (VDL) of the Trinidad and Tobago Ministry of

Food Production, using the Direct Fluorescent Antibody (DFA)

test, in accordance with the protocol recommended by the

Centers for Disease Control (CDC), Atlanta, Georgia [28].

Figure 1 illustrates the geographical distribution of the Trinidad

RABV samples used in the present study and together with

Table 1 gives details on the species source and year of isolation.

Figure S1 illustrates the total annual number of laboratory

confirmed animal rabies cases for the period under study (1997–

2010) [25].

RNA extraction, cDNA synthesis and amplification of N
gene fragments

For each sample, 50 mg of the RABV positive brain tissue was

manually homogenized with 100 ml of molecular grade water and

total RNA extracted using Trizol according to the manufacturer’s

instructions (Invitrogen). RNA was then stored at 270uC until

further use. A 542 bp portion of the nucleoprotein (N) gene was

amplified by RT-PCR using the degenerate forward primer N921

(59-YGTGTTCAAYCTHATYCACTT-39) at position 991–1011

and non-degenerate reverse primer 304 (59-TTGACGAA-

GATCTTGCTCAT- 39) at position 1514–1533 [29] both

positions according to the full genome sequence of the fixed

rabies virus strain, SAD B19 [30]. For each sample 10 ml of RNA

was added to 2 ml of the primer dilutions (5 mM) and centrifuged.

Samples were then denatured at 94uC for 1 minute, cooled on ice

(,3 minutes) and 14 ml of reverse transcription reaction (RTRX)

buffer, containing reverse transcriptase and protector RNase

inhibitor, was added before incubation at 42uC for 90 minutes

(with 4uC hold). For PCR, 80 ml of PCR buffer solution,

containing Amplitaq and primer, was added to each RT reaction

tube, briefly centrifuged and placed in a preheated (94uC)

thermocycler. Thermocycling was performed at 94uC for 1 minute

followed by 40 cycles of PCR (94uC for 30 seconds, 37uC for

30 seconds, 72uC for 90 seconds with a 7 minute extension at

72uC). Amplicons were visualized on 1.5% agarose containing

ethidium bromide (EtBr).

Nucleotide sequencing
PCR amplicons were excised from the agarose gel and

purified using the ‘‘ExoSAP-IT purification system’’ (USB

Corporation Cleveland Ohio, USA), before being subjected to

direct sequencing using the BigDye Terminator v1.1 cycle

sequencing kit (Roche) and an Applied Biosystems 3100 Genetic

Analyzer. For each sample 5 to 10 mL of purified amplicon were

placed into two separate PCR tubes for forward and reverse

cycle sequencing reactions. Two microliters of 3.2 mM forward

(N921) and reverse (304) primers and 4 ml of Big Dye

Terminator v1.1 were added and the mixture subjected to 25

cycles of PCR at 96uC, 10 seconds; 50uC, for 5 seconds; and

60uC for 4 minutes.

Nucleotide sequence data set
The data set (n = 183) comprised 33 Trinidadian sequences

derived during the study together with four sequences obtained

from the CDC, Rabies Program Repository and the Wildlife

Zoonoses and Vector-borne Diseases Research Group, AHVLA

(Weybridge, UK), and previously published RABV nucleopro-

tein gene sequences from South and Central America (i.e. Peru,

Brazil, Mexico, Columbia, Argentina, Uruguay, El Salvador,

Ecuador, French Guiana, Uruguay, Honduras, and Venezuela)

downloaded from GenBank [31]. Only Genbank submissions

that included both a date and location of origin were

considered. Table S1 shows details of all sequences used in

the study including accession numbers, dates, species and

countries of origin.

Sequences were manually aligned using ClustalX version 2.1

[32] then visually inspected and edited using Bioedit version 7.1.3

[33] before being trimmed to a common length of 363 nt.

Author Summary

The Caribbean island of Trinidad experiences periodic
rabies virus (RABV) outbreaks within the livestock popu-
lation. In this study, we inferred the evolutionary history of
RABV in the Americas and reconstructed past patterns of
RABV geographic spread in order to address the question
of whether Trinidadian outbreaks arise from locally
maintained RABV or are the result of virus importation
from the mainland (presumably via infected bats). Our
results provide statistical support for three importation
events that gave rise to each of three Trinidadian vampire
bat-associated lineages identified in the study. They also
indicate limited periods of in situ evolution within Trinidad
following each of these introductions. The results also
support Mexico and Brazil as major epicenters for the
expansion of RABV associated with vampire bats through-
out the Americas and consequently to Trinidad. The
findings of our study are particularly relevant to local
RABV monitoring and control. In addition to justifying
vampire bats as the main target for active rabies
surveillance and control activities in Trinidad, they suggest
that more intense surveillance of regions that lie close to
the mainland may be warranted. Finally, in light of these
findings, further studies should be conducted to investi-
gate the relationship between RABV spatiotemporal
dynamics and vampire bat population ecology.

Evolution and Phylogeography of Trinidad Rabies Viruses
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Phylogenetic analysis
Phylogenetic analysis was performed on the aforementioned

data set in order to investigate the evolutionary relationships and

patterns of RABV gene flow between Trinidad and the South and

Central American mainland. This was done using BEAST (v1.6.1)

which uses a Bayesian Monte Carlo Markov Chain (MCMC)

method to jointly estimate substitution rates, divergence times and

demographic histories of the sampled lineages [34,35]. Analysis

was performed under the best fit-nucleotide substitution model,

which was identified as the Transition Model plus Gamma

(TN+C4) using FindModel [36]. A relaxed uncorrelated lognormal

clock and the Bayesian skyline plot (BSP) coalescent model [37]

which does not does not assume any particular demographic

scenario a priori were chosen. To test the hypothesis that RABV is

periodically imported into Trinidad from the South American

mainland, a phylogeographic analysis was conducted, with a

reversible discrete diffusion model described by Lemey et al [35]

also implemented in BEAST. This diffusion model uses the

countries of the sampled isolates to reconstruct the ancestral

location states of the internal nodes from the posterior time-scaled

tree distribution.

Adequate sampling of the model’s parameters was achieved by

running four MCMC analyses for 100 million generations each,

sampling every 10,000 states. LogCombiner (http://tree. bio.ed.

ac.uk/software) was then used to combine runs after removing

10% burn-in (such that ESS values were .200). The BEAST

output was summarized using Tracer (available at http://tree.bio.

ed.ac.uk/software/tracer/) and then visualized using the FigTree

(v1.3.1) software package (available at http://tree.bio.ed.ac.uk/

software/figtree/) [34,35].

Figure 1. Geographical locations of confirmed RABV cases in Trinidad during the period 1997 to 2010. Locations of cases are indicated
by circles, with black circles indicating locations from which RABV sequences were derived for the current study and white circles designating
unsampled locations.. For sampled locations, the number of cases from which sequences were derived and their date and species of origin are
indicated in blue. The location of co-circulation of Trinidad I and Trinidad IIa lineages is also indicated by an asterisk.
doi:10.1371/journal.pntd.0002365.g001

Evolution and Phylogeography of Trinidad Rabies Viruses
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Results

Phylogenetic analysis
The Bayesian maximum clade credibility (MCC) tree inferred

from the complete data set of RABV nucleoprotein gene

sequences (from Trinidad and from South and Central America)

is divided into two major clades (Figure 2). Clade 1 is comprised of

RABV variants associated with canines and Clade 2 consists of

bat-associated RABV variants (isolated from rabid bats or other

rabid mammals infected by bats) that generally cluster into four

well-supported lineages (Groups I–IV; posterior probabili-

ty = .0.99) defined by the bat species that maintains the variant

enzootically (Figure 2 inset).

Within Clade 2 there are two well-defined sub-clades designated

2a and 2b arising from a node with posterior probability of 0.99.

Subclade 2a contains RABV sequences associated with Myotis sp.

bats (Group I) while sub-clade 2b primarily encompasses

sequences associated with rabies transmitted by vampire bats,

with exception of three independent lineages. The latter being

Group II which is associated with RABV in Lasiurus and Molossus

Table 1. Trinidadian sequences used for phylogenetic analysis identified by geographical, temporal and species origin.

Location

Isolate Year Source Area County Accession Number Trinidad Lineage

2010_50_CAP_PE_TRIN 2010 Caprine Penal St. Patrick KF413598 II b

2010_54_CAP_PE_TRIN 2010 Caprine Penal St. Patrick KF413582 II b

2010_56_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413595 II b

2010_15_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413597 II b

2010_26_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413614 II b

2010_53_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413594 II b

2010_25_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413612 II b

2010_51_CAP_PE_TRIN 2010 Caprine Penal St. Patrick KF413581 II b

2010_20_CAP_MO_TRIN 2010 Caprine Moruga Victoria KF413609 II b

2010_19_CAP_PE_TRIN 2010 Caprine Penal St. Patrick KF413613 II b

2010_18_BOV_BP_TRIN 2010 Bovine Barrackpore Victoria KF413591 II b

2010_16_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413603 II b

2010_22_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413586 II b

2010_28_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413607 II b

2010_52_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413585 II b

2010_39_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413583 II b

2010_35_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413580 II b

2010_27_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413604 II b

2010_23_BOV_FY_TRIN 2010 Bovine Fyzabad St. Patrick KF413578 II b

2010_32_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413601 II b

2010_38_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413587 II b

2010_40_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413592 II b

2010_48_BOV_PE_TRIN 2010 Bovine Penal St. Patrick KF413579 II b

2007_14_BOV_SP_TRIN 2007 Bovine Siparia St. Patrick KF413606 II a

2000_9_BOV_FY_TRIN 2000 Bovine Fyzabad St. Patrick KF413599 II a

2000_BOV_FY_TRIN¥ 2000 Bovine Fyzabad St. Patrick KF413588 I

2000_11_BOV_MY_TRIN 2000 Bovine Mayaro Nariva/Mayaro KF413589 I

2000_BOV_VA_TRIN¥ 2000 Bovine Valencia St. Andrew/St.David KF413590 I

2000_10_BOV_VA_TRIN 2000 Bovine Valencia St. Andrew/St.David KF413610 I

1998_7_BOV_WF_TRIN 1998 Bovine Wallerfield St. George East KF413600 I

1998_6_EQ_CM_TRIN 1998 Equine Cumuto St. Andrew/St.David KF413584 I

1997_OVI_WF_TRIN¥ 1997 Ovine Wallerfield St. George East KF413608 I

1997_45_BOV_WF_TRIN 1997 Bovine Wallerfield St. George East KF413593 I

1997_BOV_VA_TRIN¥ 1997 Bovine Valencia St. Andrew/St.David KF413602 I

1997_44_BOV_WF_TRIN 1997 Bovine Wallerfield St. George East KF413611 I

1997_41_BOV_WF_TRIN 1997 Bovine Wallerfield St. George East KF413605 I

1997_3_BOV_WF_TRIN 1997 Bovine Wallerfield St. George East KF413596 I

¥Sequences obtained from the repository of the Rabies Program, CDC and from the Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal Health and
Veterinary Laboratories Agency (Weybridge).
doi:10.1371/journal.pntd.0002365.t001
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spp. bats from South America, Group III associated with

Tadarida brasiliensis bats and Group IVa which splits all RABV

sequences associated with vampire bats from Central and

South America from those of western Mexico and Tadarida

brasiliensis from North America (represented by 1999_

GU991830_TBM_MEX) [38]. Of the remaining predominant-

ly vampire bat (Desmodus rotundus) associated lineages within

subclade 2b, Group IVb also contains Desmodus-related RABV

isolates derived from Artibeus and Molossus spp. bats in Brazil

while IVc comprises only sequences derived from Desmodus and

non-chiropteran species.

All of the Trinidad RABV sequences (n = 37) belong to

Group IV within sub-clade 2b suggesting D. rotundus as the

source of the Trinidad outbreaks. They clustered into two

largely temporally defined groups designated Trinidad I and II.

Trinidad I includes sequences isolated in 1997, 1998 and 2000

(n = 12) primarily from the northeast region of the island, and

is most closely related to RABV from Ecuador (2005, 2007),

Venezuela (1993, 1994) and French Guiana (1990). Trinidad II

contains all of the 2010 sequences (n = 23) and two earlier

sequences (2000, 2007), all from the southwest of the island.

The earlier Trinidad sequences grouped together (Trinidad IIa)

and were more closely related to Brazilian sequences (1999,

2004). Sequences derived from the 2010 epizootic (Trinidad

IIb) clustered with RABV sequences from Uruguay (2007–

2008).

Inference of evolutionary rates, dates of divergence and
geographic origins of Trinidadian RABV

The phylogeographic analysis supports three temporally

separate introductions of RABV from the mainland into

Trinidad (Figure 3). Trinidad lineages I and IIa are estimated

to be descendants of RABV that most probably existed in

Brazil (location state probabilities = 61% and 89%) around

1972 (95% HPD 1958–1983) and 1989 (95% HPD 1979–

1997) respectively. In the case of Trinidad IIb (the lineage

associated with the 2010 outbreak in Trinidad), the most

recent common ancestor is estimated to have descended from

an ancestor that existed in Uruguay around 2004 (95% HPD

1998–2007; location state probability = 77%). Lineage expan-

sion after each independent vampire bat-associated rabies

introduction is estimated to have occurred within Trinidad

(location state probabilities $95%) around 1990 (95% HPD

1983–1995) in the case of Lineage I, 1999 (95% HPD 1996–

2000) for Lineage IIa, and 2007 (95% HPD 2003–2009) for

Lineage IIb with evolutionary rates of 5.24E-4 (95% HPD

1.66E-4 - 9.44E-4), 5.62E-4 (95% HPD 1.94E-4 - 9.91E-4) and

6.24E-4 (95% HPD 2.08E-4 - 1.16E-3) substitutions per site

per year respectively. The overall mean rate of evolution

estimated for all haematophagus bat-related sequences (Group

IV) is 8.16E-4 (95% HPD 2.87E-4 - 1.53E-3) compared with

6.33E-4 (2.22E-4 - 1.16E-3) substitutions per site per year

across all of the sampled bat variant lineages (Table S2). The

co-existence of both Trinidad I and IIa lineages during the

year 2000 indicates a period of co-circulation of distinct

RABV variants, specifically in the southwestern village of

Fyzabad (see Figure 1).

Discussion

Trinidadian RABV sequences derived during this study all

originated from cases of rabid livestock sampled in Trinidad

during the period 1997–2010, including cases from outbreaks in

1997–98, 2000 and 2010. They fall within the bat-associated

Clade 2 and cluster into three largely temporally defined lineages

designated as Trinidad I, IIa and IIb, with evidence of co-

circulation of lineages I and IIa in 2000. These lineages belong to a

widespread clade of RABV variants perpetuated by D. rotundus

(vampire) bats suggesting that the Trinidad outbreaks most likely

originate from rabid D. rotundus bats. The latter are the main target

for rabies surveillance and control activities in Trinidad, on

account of their historical and epidemiological association with

rabies in both human and domestic animal populations. There

were no Trinidadian chiropteran RABV isolates available for

analysis in this study but previous evidence suggests that RABV

may also be circulating in non-vampire bat species. For example,

histopathological examination and animal inoculation conducted

in Trinidad have previously identified RABV in frugivorous bats

(Artibeus lituratus, Artibeus jamaicensis and Carollia perspicillata) and

insectivorous bats (Diclidurus albus, Pteronotus davyi and Molossus major)

[20,39]. However, as the RABV detected was not genetically

characterised, the reservoir host species and source of RABV

transmission for these rabid bats remain unknown. Consequently,

the role of non-vampire bat populations in the local transmission

of the disease remains unclear and warrants further investigation.

This is particularly relevant, given that cross-species transmission

has been estimated to occur relatively frequently (once for every 73

intra-species transmissions) [40] amongst sympatric bat species, a

relationship that has been especially noted between Artibeus and

Desmodus species in Trinidad [20,41].

Furthermore, studies throughout populated cities in Brazil have

shown that Artibeus and other bat species such as Eumops

auripendulus, Molossus rufus and Myotis nigricans are frequently

infected with region-specific Desmodus RABV lineages. It is unclear

whether these are recurrent spill-over events or whether host shifts

may be occurring in one or several of these species [15,42,43,44].

In more extensive surveys [15], fruit bat isolates appear to be sister

lineages to RABV isolated from D. rotundus and from livestock,

which points towards recurrent spill-over as the primary mecha-

nism. However, additional research is needed to clarify the role of

other bat species in the maintenance of the vampire bat RABV

variant and of specific geographic lineages in nature. Integrated

phylogeographic and ecological studies encompassing more

comprehensive spatio-temporal samplings of rabid hosts may

present a way forward in this regard. Although all of the

Trinidadian RABV sequences in this study were found to be

vampire bat variant, since there is substantial evidence to suggest

that rabies occurs in an enzootic fashion in several other (non-

vampire) bat species in the Americas [15,16,45], it may also be

worth monitoring bat species with migratory habits to determine if

RABV variants different from those associated with vampire bats

are also being introduced into Trinidad.

In Trinidad, over the period 1971–2010, only one out of 3,868

bats tested (i.e. 0.03%) by DFA tests, under the active vampire bat

rabies surveillance program was rabies positive [46]. This

surveillance program mainly targets apparently healthy bats from

Figure 2. Bayesian Maximum Clade Credibility (MCC) tree inferred for RABV in the Americas based on N gene sequences (363 nt)
from South and Central America [including Mexico] and Trinidad. Clade credibilities of 95% and over are indicated in black at the relevant
nodes. Terminal branches are coloured according to the sampled location and internal branches are coloured according to the most probable
(modal) location of their parental nodes. Major clades and Trinidadian lineages are labeled accordingly. Chiropteran phylogenetic clusters are
identified by dotted bar lines to the right and labeled according to group (species) designation which is further described in the inset.
doi:10.1371/journal.pntd.0002365.g002
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known roosts primarily in the south of the country and is typically

guided by public reporting of bat biting cases, so there is some

surveillance bias. Nonetheless, this rabies positive rate is compa-

rable to rates of 1% or less reported in natural bat populations

elsewhere [47] but is lower than rates of up to 3.3% (n = 12,227)

estimated for Trinidad on the basis of histopathological analysis

for the presence of Negri bodies in brain tissues during the 1930’s

[41,48]. The passive surveillance system in the United States

receives more than 20,000 bats (found sick or inside human

dwellings) annually for rabies testing, of which close to 6% are

confirmed rabid [49]. There is no passive surveillance of

comparable scale in Trinidad so it is not possible to compare.

However, higher rabies positive rates are expected under passive

surveillance assuming that sick and injured bats would account for

the majority of bats submitted.

RABV importation into Trinidad was first proposed by early

researchers such as Pawan [50] who suggested that the virus was

not indigenous to the bat population of Trinidad, and was first

introduced around 1925 when the first outbreak of bat-transmitted

rabies was documented. It is however likely that bat-associated

rabies existed in Trinidad even prior to the 1900’s but its presence

was masked by the incidence of dog-associated rabies during those

times. Nonetheless, the results of our phylogeographic analyses

provide statistical support for at least three recent independent

introductions of RABV into Trinidad from the mainland (from

lineages estimated to have arisen in 1972, 1989 and 2004), with

the root state probabilities favoring Brazil and Uruguay as source

populations for RABV dissemination to Trinidad. As discussed

below, RABV introduction is unlikely to have been direct from

these countries but would presumably have occurred via gradual

movement of infected bats flying to regions of the mainland

neighbouring Trinidad with subsequent entry. The proximity of

Trinidad to the Venezuelan coast of South America, (with the

closest point being approximately 7 miles from the southwestern

peninsula of the island), could easily facilitate this. In fact, the

proposed rabies reservoir host (i.e. the D. rotundus, bat) has been

reported to fly up to 12 miles (20 km) from the roost to the feeding

site in a single night [51], which would amply allow for these bats

to traverse the short distance from the South American mainland

to Trinidad to feed and return or to travel further inland on the

island. Finally further supportive evidence for such movement is

provided by documented personal accounts of the sighting of bats

flying between Trinidad and the mainland [20,52] and the sudden

appearance in Trinidad of a second vampire bat species (Diaemus

youngi) for the first time in 1954 within D. rotundus roosts that had

been routinely visited since 1935 [52]. Additionally, phylogenetic

similarity between Trinidadian RABV and Venezuelan RABV

isolated from northern Venezuelan states has been previously

reported [26,27].

Although there is clear evidence of multiple introductions,

Trinidad lineages I and IIa include sequences from viruses

sampled several years apart (up to 3 years and 7 years respectively)

Figure 3. (A) Enlargement of the section of MCC tree containing Trinidadian lineages. The location state probabilities for selected nodes
are shown as percentages. The estimated dates of divergence from mainland lineages and mean dates of existence for the most recent common
ancestor (MRCA) for lineages containing Trinidadian sequences (with 95% HPD in parentheses) are shown in blue and black respectively to the left of
relevant nodes. (B) Histogram inserts indicating the location state probabilities for the estimated introductions of RABV that gave rise to Trinidad
lineages I (I1), IIa (I2) and IIb (I3).
doi:10.1371/journal.pntd.0002365.g003
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indicating insular evolution at least for limited periods. Further-

more, based on the inferred locations of origin and the 95% HPD

for the ages of the MRCAs of the three Trinidad lineages, the

Trinidad lineages are likely to have existed in Trinidad for as

many as 14 (lineage I), 4 (lineage IIa) and 7 years (lineage IIb) prior

to first being sampled in 1997, 2000 and 2010 respectively.

The overall mean rate estimated across the bat lineages

represented in the current study (i.e. 6.33E-4 substitutions per

site per year) translates into a relatively recent estimate for the date

when the most recent common ancestor for these lineages existed

(around 1813; 95% HPD 1716–1895). This is more recent than

the estimate for all bat rabies in the Americas reported by Streicker

et al (i.e. 1585 [95% HPD 1493–1663]) [53] whose data set was

more representative of the bat rabies diversity throughout the

Americas having included 21 subspecies, species or genus specific

lineages of rabies virus sampled over a period of 37 years

(including several lineages from temperate regions of North

America). In contrast the data set in the current study was

restricted to South and Central America, represented a shorter

time frame (13 years) and included a large number of Trinidad

sequences, which while appropriate for investigating the origins

and evolution of Trinidad RABV cannot not be used as a basis for

making more general conclusions about substitution rates and

dates of divergence for bat rabies in the wider Americas.

Particularly given the over-representation of D. rotundus variant

(which has a higher mean evolutionary rate than other variants) in

our data set and the fact that evolutionary rates for RABV in

tropical or subtropical bat species are nearly four times faster than

in temperate species [53].

In terms of the mainland origins of the Trinidad lineages, it

should be noted that the phylogeographic model used (i.e. the

‘‘discrete’’ model), assumes that at any point along the phylogeny

the ancestors for the lineages sampled existed in one of the

sampled locations. Thus while Trinidad lineages are clearly

descended from Brazilian and Uruguayan lineages, and these

countries are the most likely source countries amongst those

sampled, since current rabies surveillance systems might not be

detecting RABV lineages circulating in large transects of the

Amazon region, it is also likely that the introductions occurred via

bats infected with RABV lineages originating from undersampled

or unsampled countries closer to Trinidad, such as Venezuela or

Guyana. There is also the possibility of human-mediated RABV

introduction, for example accidental translocation of bats via ships,

shipping containers and even aircrafts, which has been document-

ed in previous studies [54]. However, given that the dates of

divergence from the Brazilian and Uruguayan ancestors predate

lineage expansion within Trinidad by several years, it is more

likely that, during this period, RABV from Brazil and Uruguay

spread northward from country to country on the mainland until

being isolated in Trinidad several years later. Subsequent to our

analysis, we received sequence data from two bovine RABV from

Guyana (GenBank accession nos: KF424538 and KF424539)

which further support the northwards expansion of Lineage IIa

from Brazil (data not shown). This limitation of the discrete model

in BEAST may be addressed through implementation of the more

realistic ‘‘continuous trait’’ model that allows for diffusion over a

continuous landscape [55]. However the performance of this

model relies on very specific locations of origin (i.e. GIS co-

ordinates), which were not available for the sequences used in the

present study.

In light of the confirmed vampire bat origin of RABV

circulating within Trinidad and statistically supported evidence

of repeated importation from the mainland, further studies

should be conducted to investigate the relationship between

RABV spatiotemporal dynamics and vampire bat population

ecology, in particular any movement between the mainland and

Trinidad. A better understanding of this relationship would

allow for more focused targeting of vampire bat surveillance

activities.

Vampire bats are clearly the most significant reservoir for

RABV in Trinidad [18,56]. However, since the last reported

case of canine transmitted animal rabies in 1914 [57], other

than a mongoose survey in 1954 [58] (the results of which

indicated a rabies-free mongoose population [18]), there has

been no surveillance targeting wildlife (non-chiropteran) and

free-living animals. Therefore, the extent to which other wildlife

species (including other bat species) may be involved in RABV

transmission in Trinidad remains unknown. In this light, a

paradigm shift towards passive surveillance focusing on dead,

sick and injured bats and wildlife could contribute to filling this

gap.
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