ABSTRACT

Synthesis, Structural and Spectroscopic Characterization of Novel Lanthanide Dinuclear Macroyclic Schiff Base Complexes.

Susan Annmarie Bailey-Folkes

The first crystal structure of novel dinuclear lanthanide complexes synthesized by template condensation of 2,6-diformyl-p-cresol and 3,6-dioxo-octanediamine in the presence of lanthanide (La-Dy) nitrates is reported. The solution of the structure of the digadolinium complex confirms encapsulation of a pair of cation in the macrocycle at \(\approx 4\AA \) apart. X-ray diffraction and crystal morphology studies confirm that the homo- and heterodinuclear complexes are isostructural.

Intense sensitized luminescence of Eu\(^{3+}\) (lifetime \(-860 \pm 10 \mu s\)) and Tb\(^{3+}\) (lifetime \(-1618 \pm 20 \mu s\)) ions at 77 K is revealed; Tb\(^{3+}\) ions showing strong, efficient emission even at RT, when present only as an impurity ion in 99.999\% pure gadolinium nitrate.

Pr\(^{3+}\)-Pr\(^{3+}\) interaction is suggested by magnetic susceptibility data whereas other metal-metal
interactions are revealed in photophysical studies e.g. Eu$^{3+}$-Sm$^{3+}$ (Eu$^{3+}$ lifetime = 94 ± 1 µs). High resolution Eu$^{3+}$ luminescence spectroscopic studies show unusual multiplicities of the 7F_1 and 5D_1 states which are attributed to metal-metal interactions.

Very unusually broad 13C resonances without the normal paramagnetic shifts were observed in the Cross Polarization Magic Angle Spin Nuclear Magnetic Resonance of polycrystalline samples at constant and variable temperatures.