ABSTRACT

We studied the effects of acute and chronic administration of aqueous neem leaf extract on the cardiovascular system in male Wistar rats with DOCA-salt induced hypertension.

For the acute experiments, rats were divided into Normal, Vehicle Control and DOCA-salt groups. In Normal rats, intravenous administration sequentially of 5, 10, 20, 40, 80 and 100 mg/kg body weight of neem extract caused significant fall in systolic, diastolic, mean arterial pressure, pulse pressure and in heart rate at all dosages above 20 mg/kg.

Blood Pressure in DOCA-salt treated rats was significantly higher than in Controls. Intravenous administration of 40 mg/kg of extract caused significant fall in blood pressure in Control and DOCA-salt groups. The effects of 40 mg/kg neem were similar to the effects of 5 μg/kg acetylcholine and were blocked by 1 mg/kg atropine (p<0.05).

Aortic rings from Control and DOCA-salt groups contracted at lower, but, in the DOCA-salt group relaxed markedly (p<0.05) at higher bath concentrations of neem extract, with no significant difference in EC₅₀ between groups. Removal of endothelium significantly attenuated the contractile responses (†EC₅₀) and abolished the relaxation responses in the DOCA-salt group.

Chronic administration of neem extract during DOCA-salt treatment (DOCA-salt-neem group) prevented blood pressure elevation, although Baroreflex Sensitivity was similarly depressed in both the DOCA-salt and the DOCA-salt-neem groups (p<0.05).
Aortic rings from DOCA-salt rats were significantly more sensitive to
noradrenaline and 5-HT than those from Controls and DOCA-salt-neem
groups. Rings from DOCA-salt and DOCA-salt-neem rats showed
significantly attenuated relaxation in response to acetylcholine. The DOCA-
salt-neem rings in addition showed a contractile response at higher
concentrations. TEA blockade of K_{Ca2+} channels attenuated ACh-induced
relaxation in Control and DOCA-salt rings, but enhanced relaxation in DOCA-
salt-neem rings and abolished the contractile response, virtually abolishing the
difference between the Control and the DOCA-salt-neem groups.

Our results show that aqueous neem extract reduces blood pressure acutely in
control and hypertensive rats perhaps by a cholinergic mechanism, and
chronically, prevents the development of hypertension. Paradoxically, the
acute effect of extract on isolated aortic smooth muscle was contractile at
lower doses, relaxation appearing only at high concentrations.