ABSTRACT

Sequence Analysis of Ribosomal DNA Amplification Products and Investigations on Protoplast Isolation from Vesicular-Arbuscular Mycorrhizal Fungi of the Genus *Gigaspora*

Lyndon Dale Waterman

Research presented in this thesis was aimed at generation of protoplasts from vesicular-arbuscular (VA) mycorrhizal fungi and development of species-specific PCR primers for identification of *Gigaspora margarita* (Glomales, Zygomyccetes). Production of axenic extraradical hyphae of VA mycorrhizal fungi for experiments on protoplasts was investigated in two systems: as regrowth hyphae from roots extracted from pot cultures of VA mycorrhizas and as extraradical hyphae from mycorrhizas formed *in vitro*. Surface decontaminated roots extracted from pot cultures did not produce
useful regrowth hyphae. In axenic cultures with excised roots or
*Agrobacterium rhizogenes*-transformed roots, hyphae of germinated spores
proliferated over and around roots without formation of mycorrhizas.

In the absence of axenic extraradical hyphae, germinated spores and
their hyphae were used in experiments on protoplast production. These
hyphae proved to be resistant to the action of many commercial lytic enzymes
used at high concentrations and in several combinations. The hyphae were not
digested by extracellular extracts from cultures of *Bacillus pumilus* or
*Streptomyces* no. 6 used alone, or with commercial lytic enzymes, while
hyphae of *Rhizopus stolonifer* (Mucorales, Zygomycetes) were readily
protoplasted in enzyme mixtures containing *Streptomyces* culture extract.

A method was developed for isolation and purification of high
molecular weight DNA from spores of *G. margarita*. Further purification of
extracted nucleic acids yielded DNA from which the 5.8S rRNA genes and
flanking internal transcribed spacers were amplified by the polymerase chain
reaction. Sequences of the 5.8S rRNA gene and internal transcribed spacers
of *G. margarita* were determined from amplified fragments cloned into a
plasmid. The sequence was aligned with homologous fungal sequences and
two PCR primers were derived based on unique sequences in the internal
transcribed spacers of *G. margarita*. These primers when tested with plasmids
containing rDNA sequences from *G. margarita*, produced amplicons of
expected sizes.