SUMMARY

1. A primed intermittent oral dose and a primed continuous intravenous infusion of 15N-alanine was administered to healthy males to determine the rates of protein turnover, synthesis and breakdown. The subjects were fed an adequate intake throughout the day. Urine and blood samples were collected.

2. Mean rate of protein flux as measured by the enrichment of urinary ammonia and urea were found to be 2.25 ± 0.21 and 3.00 ± 0.42 g. protein/kg./day respectively during the oral administration. The values obtained from the intravenous study were 1.87 g. protein/kg./day with ammonia and 4.57 g. protein/kg./day with urea. When each end product and the respective technique was considered the mean rate obtained using 15N-alanine was lower than that reported using 15N-glycine. However, the rank order of the values for the different methods was similar to those with 15N-glycine.

3. Mean plasma alanine flux after the oral and intravenous studies were 548 ± 128 and 281μmol/kg./hr. respectively. Red cells alanine flux was different and higher than plasma flux in each study.

4. During the studies a considerable amount of label was transferred to urinary ammonia and urea while glutamate and alanine had low enrichments.

5. In the fed state, after the oral dose, denovo alanine synthesis was calculated to be 457.4μmol/kg./hr. This accounted for eighty-three percent of plasma alanine flux, thus seventeen percent of alanine moving through the venous plasma compartment.
originated from preformed alanine.

6. Up to sixteen to twenty-two percent of urinary ammonia was derived from alanine.