ABSTRACT

Efficiency of applied nitrogen in direct – seeded flooded rice
(Oryza sativa L.).

Nigel Anthony Grimes

In Trinidad, rice (Oryza sativa L.), is cultivated by most medium- to large-scale farmers as direct seeded flooded rice. Under this production system, N fertilizer plays a vital role in obtaining high grain yields. Low N use efficiencies have been reported under the existing N fertilizer management systems. As such, there exists the need for formulating appropriate N management strategies in order to improve N use efficiency. In view of this, studies were conducted to determine the efficiency of applied N under local conditions and subsequently, to investigate various methods that can be employed to increase the efficiency of fertilizer N.

Two field experiments and one pot experiment were conducted using 15N methodology. The first field experiment was conducted to determine the efficiency of applied CO(15NH$_2$)$_2$-15N at varying rates of application and at different stages during the growth of the rice crop. The second experiment was a pot experiment which was conducted to determine the efficiency of applied CO(15NH$_2$)$_2$-15N at specified times prior to, at, and subsequent to panicle initiation. The second field experiment was conducted to determine the efficiency of applied CO(15NH$_2$)$_2$-15N, using various methods of application.
Fertilizer N application resulted in an increase in the exchangeable soil NH$_4^+$ -N. A significant ($p < 0.05$) increase in grain yield was achieved with fertilizer N application to the rice crop. A fertilizer N rate of 90 - 103 kg N/ha was found to be optimum with respect to achieving maximum grain yield for the rice crop under local environmental conditions. The efficiency of applied CO(15NH$_2$)$_2$-15N in the rice crop averaged 35% and was significantly ($p < 0.05$) affected by the rate of N application. The timing of N application did not significantly ($p < 0.05$) affect recovery. There was no significant ($p < 0.05$) effect on the efficiency of CO(15NH$_2$)$_2$-15N by varying the time of N fertilizer application at and around the panicle initiation stage. The method of N application was also observed to have a significant ($p < 0.05$) effect on the recovery of applied fertilizer N.

The results of this study show that opportunities exist for increasing N use efficiency and grain yield by employing appropriate N management strategies to high-yielding N responsive rice varieties cultivated under sound crop management practices.

Key Words: Nitrogen efficiency, 15N methodology, direct-seeded flooded rice

(Oryza sativa L.)