The Design and Implementation of an Enculturated
Web-Based Intelligent Tutoring System

Phaedra Mohammed
Department of Computing and Information
Technology
The University of the West Indies
phaedra.mohammed@gmail.com

ABSTRACT

Accommodating for learner diversity based on cultural
backgrounds has not yet been a major personalisation focus
until recently. Increasing numbers of Internet-ready devices
have propelled e-Learning forward such that these
deficiencies in cultural-awareness can no longer remain
unattended. Despite being investigated from an
instructional design standpoint, the enculturation of digital
learning environments has largely been theorized,
necessitating manual enculturation by experts, instructors
and even students. Consequently, enculturated learning
environments are limited in practice. In this paper, a
preliminary design for building a web-based Intelligent
Tutoring System (ITS) is described together with the
features and intended functionality of the various
components. This work contributes a practical approach
that was implemented and evaluated using two concrete
systems within the domain of Computer Science education.
An analysis of the findings and empirical evidence reported
in the study supports the viability of the approach taken and
reveals that intelligent tutoring systems benefit from
enculturation.

Author Keywords

Intelligent Tutoring Systems; Culture; Computer Science
Education; Software Design; Experimentation

INTRODUCTION

Interactive educational systems deliver instructional content
to learners with the intention of providing a customised
learning experience. This is achieved through
personalization based on a variety of dimensions: learning
styles, instructional objectives, devices used for content
delivery and so on. Accommodating for learner diversity
based on cultural backgrounds however has not yet been a
major personalisation focus until recently. Increasing
numbers of devices capable of accessing the Internet have
propelled e-Learning forward such that deficiencies in
cultural-awareness can no longer remain unattended.
Educational content and online tools were originally

26

considered to be more usable if they were designed without
any culture-specific features. However, the development of
culturally neutral content and tools is virtually impossible
since cultural partiality pervades every design choice.

The design of user interfaces, the selection of teaching
strategies, the format and content of the educational
material all vary depending on the cultural background of
the developers [7]. Subtle cultural influences seep into the
final product and this can be counter-productive to learning
when stereotypes and personal interpretations clash with the
practices and beliefs of the students. So, by
internationalizing or localizing these systems [12], certain
users may be included and others left out thereby working
against the goal of providing individualized instruction to
any learner at any time. This happens largely because the
cultural background of a learner plays a significant role in
shaping his/her learning habits, and cultural appropriateness
can no longer be treated as an optional personalisation
dimension.

Despite being investigated from an instructional design
standpoint, the enculturation of digital learning
environments has largely been theorized, necessitating
manual enculturation by experts, instructors and even
students. Consequently, enculturated learning environments
are limited in practice because many developers have shied
away due to the complexity in reliably representing aspects
of a particular culture [11, 2]. Young [12] points out that
the dearth of culturally-aware ICT systems can also be
attributed to the lack of guidance regarding the integration
of culture-specific elements into present-day instructional
design. Above all, the knowledge and processes for
incorporating culture have not been clearly defined with
automation in mind [2].

Interactive educational systems are in essence pieces of
software and therefore any enculturated approach must be
expressed in a well-defined, unambiguous manner. In this
paper, a preliminary design for building an enculturated
interactive educational system namely a web-based
Intelligent Tutoring System (ITS) is described together with
the features and intended functionality of the various

components. Owing to the lack of computationally-viable
approaches for building enculturated systems [11], this
work contributes a practical method that can be replicated
irrespective of the instructional domain chosen. The
implementation details and tools used to create two
concrete systems based on this architecture for the
Computer Science domain are discussed. The results of an
experimental study and qualitative evaluation conducted
using the systems are outlined. An analysis of the findings
and empirical evidence reported in the study is done
together with a discussion of the significance of the results.
The paper concludes with a summary of the research
contributions made and the future plans for improving the
prototypes and advancing the research ideas expressed.

ENCULTURATED SYSTEM DESIGN AND COMPONENTS

Enculturated instructional software systems must satisfy
several requirements, and design decisions were made in
order to satisfy these requirements. A modular design was
chosen because of the complexity involved in delivering a
culturally-relevant instructional —experience. Flexible
alteration and improvement of the component features are
easily accommodated as a result. Many of the components
featured in the design of the enculturated web-based ITS
are based on the following traditional ITS components: a
student model, a domain model, and an expert model [8].

Figure 1. Enculturated web-based ITS system architecture

A client-server approach is taken. A cultural student model,
cultural heuristics, a content repository, and a pedagogical
module make up the major architectural units of the design.
Figure 1 shows how these components are connected in a
cohesive system and it also shows the exchange of data
amongst the components. Web related components such as
server software and content aggregators will not be
discussed since these are standard in web-based systems.

CULTURAL STUDENT MODEL

A student model serves the traditional purpose of recording
the student’s knowledge levels, learning achievements, and
learning goals. It stores logs of the pedagogical events in
the web session. The student model stores performance-
related data such as prerequisite knowledge, topics
completed, submitted answers, questions completed,
successful and failed attempts at learning activities, number
of attempts, time taken, suggested hints and instructional
guidance given to the student. Economides [3] and
Blanchard et al. [1] recommend storing cultural learner-
related data in a student model and consequently the
cultural learner model was assimilated into the student
model since they are inherently related. The model also
tracks the player’s interaction with the software, and
records information related to how the system is being used
such as dwell time on areas of the screen for example. It is
essentially a snapshot of the player’s educational
experiences.

27

CULTURAL HEURISTICS

A culturally-relevant instructional approach requires that
cultural references made by the software system should be
applicable to the learning content, familiar to the students,
authentically rendered, and integrated into the context of
the instructional material [4, 6]. Cultural rules modify the
textual portions of instructional content such as question
descriptions, scenarios, hints, and instructional feedback
produced by the web-based system. The enculturation of
visual portions of these systems, namely the multimedia
related to the learning activities, is also handled by these
rules. The textual modifications include customizing the
language of the instructional feedback, whereas the
multimedia enculturation involves swapping in cultural
assets for generalized assets such as images. Textual
outputs of the enculturation process are sentences expressed
in a cultural dialect specifically mesolect forms', and
equivalent cultural lexical terms. The cultural target is
determined by the student’s cultural background (from the
student model).

Client Log-on
Request N

Server
Response

f—

Student Model
Handler

Logon
Serviet

Client i
Request

System
Serviet

1

Content
Generalor

1l
Wegn_ %;gme |
il

il T

|
11 11
Il 1
- e I
| |

=
[

Server
Response

—

Enculturator

| Fact File Generator |

— Data Flows

— Server Response
====3 Client Request

CONTENT REPOSITORY

The content repository handles the organisation and
distribution of all web-related, instructional, and cultural
assets to the web content aggregator. Enculturated web-
based ITSs rely on reusable content more than non-cultural
ITSs because of the additional dimension of cultural
personalisation; this was the basis for having a separate
asset repository - reusability. The content repository
primarily hosts all of the educational and interface-related
material used by the system and the student model. For

1 A variety of language in a Creole continuum that is
intermediate between the standard form (acrolect) and
forms that diverge greatly from the standard form (basilect).

example, multimedia files related to the interface’s look and
feel, such as icons, logos, and those related to the learning
exercises (scenario pictures, feedback pictures) are stored
here together with educational material such as question
descriptions, solutions, feedback files, topic hierarchies.
Each of these assets is described by their asset metadata.
The metadata descriptions define the context of use and the
nature of the assets and are indispensable in the design
because they facilitate reuse and exchange of compatible
assets. Both the pedagogical module and cultural heuristic
component use these descriptions when making
instructional and enculturation-related decisions.

PEDAGOGICAL MODULE

The pedagogical module serves the same purpose as the
expert model in an ITS but was separated from the student
model for a cleaner design. Instructional rules constantly
access and update the student model in response to input
data from the student and events captured from the screen.
They control how and when instructional feedback is given,
and they manage the selection and transition of the learning
activities. Any on-screen feedback given is stored in the
student model so that records of student experiences are
kept up to date.

Name of Description of Learning
Variable Activity Variable
ID Unique identifier

Topics_Tested Topic(s) tested or covered in the

learning activity

Multimedia* Filename(s) of multimedia
content used in the activity
Skill_Level The skill level that a student

must possess for successful
completion of the activity

Learning_Objectives Skills or knowledge that a
student should possess upon

successful completion of the activity

Question_Description®*| Descriptions, instructions, and/or
scenarios that guide the student and

set the context of the question

Question Content that the student must
manipulate, modify, or select from.
Answer Model answer/content expected
from the student
Hints* Further guidance corresponding

to different parts of the model

answer

Table 1. Learning material template used by the pedagogical
module and cultural heuristics

In order for these rules to properly scaffold the learning
activities and determine appropriate feedback for the

28

student, the learning materials need to follow a template
used internally or provide metadata descriptions that
identify the corresponding parts identified in Table 1 below.

SYSTEM IMPLEMENTATION

Two web-based ITSs were implemented based on the
software architecture described in the previous section. One
system was enculturated for a Trinidad and Tobago context
(Culturally Relevant Instructional Programming System —
CRIPSY) while the other remained generic (Instructional
Non-CulturAl Programming System — INCAPS). Both
systems were built for the same educational domain,
Computer Science programming, and were identical from a
functional standpoint.

The systems were implemented using Java-based tools and
technology which facilitated seamless integration of the
various components into one complete system. At the
presentation layer, HTML, javascript, and css were used to
create the web pages and graphical user interfaces. The
Dynamic Web Content Aggregator was implemented using
servlets that rendered and formatted the web pages.
Additional servlets were used to deliver required
functionality such as validation, verification of input data,
and for handling log-ons and session management. Apache
Tomcat 6.0 was used as the web server environment. The
pedagogical module, student model, and cultural heuristic
component were implemented using JESS (Java Expert
System Shell) rule engines and rules. Intermediary java
programs were used to connect each of these self-contained
units. At the data level, simple file formats were used to
manage the content repository since rule engines handle
data manipulation primarily using facts.

The development of enculturated assets for CRIPSY was
done semi-automatically and manually. Computer Science
(CS) education stresses the importance of analytical
programming skills [5] because a large part of the
curriculum involves reading, planning, and writing
computer programs. These skills include being able to
understand code written by other people such as libraries
and full programs, and being able to detect and repair errors
in the syntax and logic of program code. Proper
development of these skills requires rigorous practice
sessions with written problem sets in the form of code.
Basic skills of understanding program code and detecting
and repairing syntactical and logic/analytical errors were
targeted using code snippets related to topics on the
programming curriculum of the target student audience.
Constructivism and situated cognition was selected as the
major instructional strategy since analytical programming
skills were being targeted and also because of the good fit
between situated cognition and culturally-aware instruction
The programming exercises’ descriptions, parts of the
exercise code and instructional hints were enculturated
using subtle, careful use of cultural semiotics, specifically
familiar language and cultural names of objects and foods.

As shown in the screenshots in Figure 2 above, both
systems used the same instructional content but differed in

the expression of the content, that is, cultural and non-
cultural. A minimalist interface design was used in order
not to distract the students and to increase ease of use.
Instructional feedback consisted of identification of
correct/incorrect lines of code, hints for the incorrect lines,
and general guidance.

Figure 2. Screenshots of CRIPSY (top) and INCAPS (bottom)
featuring enculturated and non-cultural versions of the same
programming exercise.

EXPERIMENTAL DESIGN AND RESULTS

A study was done to evaluate whether the enculturated
system, CRIPSY, was more effective than the control
system, INCAPS, for increasing analytical programming
skill, and to gauge student opinion and interest in the
culturally-enhanced approach taken.

Participants

Sixty (60) students, 31 males and 29 females, enrolled in
the first year computer programming course at the
University of the West Indies (U.W.l.) voluntarily
participated in the study. Aged between 18 and 47 years
(mean=20.983, 5.d.=4.835), 23.3% were of African descent,
41.6% were of East-Indian descent, 1.66% were of
Caucasian descent, and 33.3% were of mixed ethnicities.

Procedure

The students were randomly assigned to a control group
(n=30) and a test group (n=30). A timed pre-test was
administered to both groups, then the students logged on to
the test servers in the Computer Science laboratory at
U.W.Il. Each student was given a unique username and
password that activated the respective pre-assigned system.
The student was therefore unaware of whether the system
was cultural or non-cultural prior to logging on. The test
group used CRIPSY and the control group used INCAPS.

After 30 minutes, the sessions timed-out automatically to
ensure that both groups used the systems for the same
duration. A timed post-test was then administered, followed
by an evaluation survey. At the end of the experiment,
usage logs were retrieved from the server machines.

RESULTS

Initial examination of the pre-test (P1) and post-test (P2)
scores indicated positive changes in the post-test
performance of both groups of students as illustrated in
Table 2 below. Paired t-tests conducted on both sets of pre-
test and post-test scores revealed statistically significant
increases in the students’ programming skills after they
used the systems. Table 2 shows that the difference in the
post-test scores of the test group (CRIPSY) was higher than
that of the control group (INCAPS). It should be noted
however, the difference between the groups’ scores is
modest and not statistically significant (p= 0.3975)

Group N P1 P2 Diff T-Test
CRIPSY | 30 | 8.0667 | 10.1000 | 2.0333 | 0.0001
INCAPS | 30 | 84333 | 9.9000 | 1.4666 0.0045

29

Table 2. Changes in pre-test and post-test scores for the test
group (CRIPSY) and control group (INCAPS)

Overall, the students had roughly equivalent averages for
time-on-task with the programming exercises for the test
and control groups. Greater variation was found for the
number of correct, incorrect and total attempts made at
completing the exercises between the test and control
groups as shown in Table 3 below.

CRIPSY INCAPS
Correct m =1.8077 m=2.2174
Questions s.d.= 1.4148 s5.d.=1.9059
i m = 9.0385 m =
Attempts s.d.=5.2267 | 11.2174
P s.d.= 7.7222
m = 26.2692 m =
Incorrect s.d.=12.3792 | 37.5217
Attempts s.d.=
18.3424
m = 35.3077 m =
Total Attempts s.d.=16.2327 48.78331:3
22.05204
m = m =
. 23.52745 25.58684
Time-on-task sd= sd=
6.041183 6.373995

Table 3. Summary statistics extracted from session log files for
the test group (CRIPSY) and control group (INCAPS)

Analysis of the logged session data revealed positive, very
significant linear correlations (p<0.01) between the total
time spent on the exercises in the systems and the total
number of attempts made for both the test (r=0.584) and
control groups (r=0.519). Strong, extremely significant

correlations (p<0.001) were also found between the total
number of correct attempts made and the total number of
exercises completed successfully for both the test (r=0.899)
and control groups (r=0.932). The total number of incorrect
attempts and the total number of exercises completed
successfully were very significantly correlated for the test
group (r=0.519, p<0.01) but only weakly related for the
control group (r=0.102, p>0.1). A strong significant
correlation was found between the positivity of the system
rating given by the test group students and the total number
of attempts they made at the exercises (r=0.589, p< 0.01)
whereas a weak negative correlation existed for the control
group (r=-0.097, p>0.1).

In the subjective assessment survey, 56.2% of the test group
students rated CRIPSY as ‘really good” and “pretty good’,
42.3% rated it as ‘ok’, and 11.5% rated it as ‘not good’. The
most popular reasons for liking CRIPSY were helpful hints,
interesting and funny problem contexts, encouraging
understanding of programming errors, and the use of
cultural language. The most common reasons for disliking
CRIPSY included server glitches, lack of flexible answer
formats, unreadable or “too much” cultural language, and
confusing problem contexts.

43.5% of the control group students rated INCAPS as
‘really good’ and ‘“pretty good’, and 56.5% rated it as ‘ok’.
None of the control group students rated INCAPS as ‘not
good’. The most popular reasons for liking INCAPS were
interesting and funny problem contexts, encouraging
understanding of programming errors, and helpful problem
descriptions. The most common reasons for disliking
INCAPS included server glitches, lack of flexible answer
formats, unreadable cultural language, and distracting
problem contexts.

The difficulty of the exercises received mostly similar
reviews. Around 4% described the exercises as challenging
from both groups. 74% of the control group and 76% of the
test group found the exercises to be neither easy nor
difficult. The remaining 22% of the control group rated the
exercises as easy compared to 16% of the test group.
Interestingly, 4% of test group gave a rating of ‘very easy’.
The instructional feedback was identical in both systems
with the exception of the enculturated language used in
CRIPSY. Students rated the feedback in CRIPSY as helpful
(85.7%), encouraging (10.7%) and useless (3.6%) whereas
INCAPS was rated as helpful (69%), encouraging (24.1%),
and confusing (6.9%).

ANALYSIS OF RESULTS

The increases in test scores for both groups were significant
and provide strong evidence for the success of Intelligent
Tutoring Systems in increasing student performance.
Although only marginally larger, the group that used the
enculturated system, CRIPSY, produced larger gains
compared to control group. This confirms the assumption
that cultural interventions do indeed have positive effects
on learners [6, 7] and provides empirical evidence in
support of enculturated learning systems. In addition, the

30

seamless integration intended amongst the cultural software
components and the traditional ITS components was
achieved since similar usage patterns were found in both
the test and control group session logs. Cultural elements
did not detract away from student behaviour commonly
reported for ITSs since similar correlations were found for
between the total time spent on the exercises in the systems
and the total number of attempts made, and between the
total number of correct attempts made and the total number
of exercises completed successfully for both experimental
groups. The enculturated system however performed
slightly better compared to the control system since the
total number of incorrect attempts and the total number of
exercises completed successfully were strongly correlated.
This implies that both correct and incorrect attempts made
with the enculturated system proved to be beneficial for
completing the exercises. Making attempts also seemed to
be encouraging for students in the test group since the
positivity of their system ratings increased with the number
of attempts made. This relationship was weaker for the
control group which suggests that the culturally enhanced
system may indeed have promoted a more relaxed learning
atmosphere as theorized by proponents of culturally-aware
instructional environments [6,7].

Both systems suffered from parallel problems related to
server glitches and software bugs. Inflexible answer formats
understandably caused confusion for both sets of students
since correct alternative programming solutions were not
accepted by the pedagogical module. This resulted in some
students being blocked from advancing to the next exercise
despite having correct answers. Surprisingly, these
problems did not decrease the appeal of the tutoring
systems because students were eager to have access to the
systems when the experiment was over. Another design
issue that affected students was the static cultural language
used in the enculturated system. For some students the
density of the cultural terms used distorted the text and
made the sentences difficult to read quickly and therefore
difficult to understand quickly. An initial suggestion of
incorporating a customizable language density scale was
proposed as way of dealing with this problem so that users
may adjust the language to suit their own preferences. This
feature was immediately confirmed as desirable by the
students.

Overall, the students liked the enculturated system
primarily because of the reasons outlined in earlier studies
[9, 10] enriching learning experiences and humour. The use
of culture created a familiar setting and it was done in a
way that was interesting to the students. Although both
systems employed an anchored instructional approach, a
larger percentage of students rated the programming
exercises as easier for the enculturated system compared to
the control system. The instructional feedback/hints were
also deemed to be more helpful by the students using the
enculturated system again despite providing similar
guidance to those used in the control system.

CONCLUSION

Culture is rapidly becoming an important consideration in
the design of elLearning software firstly because of the
increase in the number of users accessing software over the
Internet, and secondly because of the sheer diversity in the
cultural backgrounds of these users. Conventional learning
has often taken place in a localized setting with a teacher
guiding one or more students in their search for knowledge.
With the advent of the Internet, this traditional setting has
changed drastically since students now have access to
teachers and educational material from over wide distances.
Consequently, these students are exposed to a variety of
educational tools, teaching strategies and learning materials
which were not developed with their own personal needs in
mind. This has dramatic usability implications especially
when the mainstream culture for which e-Learning
materials are designed clashes with that of the users.

Based on the encouraging evidence established by the
study, the research discussed in this paper demonstrates a
practical approach towards developing an enculturated web-
based learning environment. By leveraging research from
various fields such as Intelligent Tutoring Systems and
culturally-aware instruction, this work shows how the
complexity of enculturation can be managed and how
aspects of intelligent tutoring can be enculturated.
Empirical evidence indicates that enculturated systems
perform as well as traditional tutoring systems and are
potentially superior at creating relaxed, engaging learning
atmospheres for the Computer Science programming
domain. However care must be taken to ensure that the
cultural enhancements match the tolerance level of the
student users. Further refinement and improvements are
planned for the systems described. A limited amount of
cultural automation was undertaken, so expansion of the
cultural coverage is necessary. Additional features such as
deeper cultural learner profiling, adjustable language
density, and greater tutoring flexibility are also part of the
plans intended for this research.

REFERENCES

1. Blanchard, E., Razaki, R., Frasson C. Cross-cultural
adaptation of e-Learning contents: A methodology. In:
Richards, G. (ed.): ELearn 2005, AACE (2005), 1895-
1902.

2. Blanchard, E.G., Mizoguchi, R. Designing culturally-
aware tutoring systems: Toward an upper ontology of
culture. In E Blanchard, and D Allard (eds.), Culturally

31

. Henderson, L.

. Mohammed, P.,

Aware Tutoring Systems, Montreal, Canada, (2008), 23-
34,

. Economides, A.A. Culture-aware collaborative learning.

Multi-cultural Education & Technology Journal 3, 4
(2008), 243-267.

. Fleer, M. Reflecting indigenous culture in educational

software design. Journal of Reading 32, 7 (1989), 611-
619.

. Gray, S., Edwards, S., Lewandowski, G., and Shende,

A. Improving student programming skills by developing
program comprehension abilities: Panel discussion.
Journal of Computing Sciences in Colleges 20, 3 (2005),
235 - 237.

Theorizing a multiple cultures
instructional design model for e-Learning and teaching.
In Edmundson A. (ed): Globalized E-Learning Cultural
Challenges, Information Science Publishing: London,
UK (2007), 130- 154

. McLoughlin, C. Adapting e-Learning across cultural

boundaries; A framework for quality learning,
pedagogy, and interaction. In Edmundson A. (ed):
Globalized E-Learning Cultural Challenges,
Information Science Publishing: London, UK (2007),
223- 238.

. Mills, C., Dalgarno, B. A Conceptual model for game-

based Intelligent Tutoring Systems. In Proc. Ascilite
http://www.ascilite.org.au/conferences/singapore07/proc
s/mills.pdf (2007)

and Mohan, P. Student attitudes
towards using culturally-oriented educational games to
improve programming proficiency: An exploratory
study. In: Edutainment, LNCS 5670, Springer-Verlag:
Berlin (2009), 196-207.

. Mohammed, P., and Mohan, P. Combining digital

games with culture: A novel approach towards boosting
student interest and skill development in Computer
Science programming. In: 2010 Second International
Conference on Mobile, Hybrid, and On-Line Learning,
IEEE Computer Society (2010), 60-65.

. Rehm, M. Developing enculturated agents- Pitfalls and

strategies. In E.G. Blanchard, D. Allard (eds):
Handbook of Research on Culturally-Aware Information
Technology: Perspectivies and Models. IGI Global
(2010)

. Young, P. Integrating culture in the design of ILTS.

British Journal of Educational Technology 39, 1 (2008),
6-17.

