ABSTRACT

Population studies of the pigeonpea pod borer, *Ancylostomia stercorea* (Zeller) (Lepidoptera: Pyralidae) and relations to its parasitoids and host plant, *Cajanus cajan* (L.) Millsp.

Ayub Khan

Six parasitoids were found to attack the egg and larval stages of *A. stercorea*, the braconids *Apanteles etiellae isolatus*, *Bracon cajani*, *B. thurberiphagae* and *Phanerotoma bennetti*, the betylid, *Goniozus punctulaticeps*, and the ichneumonid, *Eiphosoma annulatum*. Pupal diapause in *A. stercorea* was demonstrated and control of this stage was an important component of an integrated programme for the pod borer.

The population parameters, mean generation time \((T = 42.75 \text{ days}) \), intrinsic \((r_m = 0.108) \) and finite rate of increase \((\lambda = 1.11) \), mean fecundity \((34.71 \pm 0.23) \) eggs per female and net reproductive rate \((R_n = 94.81) \) were estimated for *A. stercorea*.

Analysis of temporal distribution of the eggs of *A. stercorea* over two years showed regular cyclical patterns coinciding with the flowering of the host plant. *A. stercorea* egg distribution was best described by Taylor’s Power Law \((b = 1.26) \) and Iwao’s Regression \((\beta = 1.41) \) both
indicating aggregation. A sequential sample table based on the egg stage was constructed for use in the field.

Life tables prepared for *A. stercorea* were analysed using conventional key factor analysis and the newer multiple decrement life table approach. Fourth (k_4) and fifth instar mortality (k_5) as well as adult mortality (k_6) were identified as the key mortality factors. The multiple decrement approach revealed that an average of 33.9% mortality occurred in all stages.

Life tables were also prepared for pigeonpea and similar analyses conducted. Mean bud, flower and pod abscission during the entire season was ($30.4 \pm 4.4\%$); ($59.5 \pm 4.5\%$) and ($10.1 \pm 2.5\%$) respectively. The key factor was identified as k_3 (pod l) mortality, whereas the regulating factor was k_2 (flower mortality). Multiple decrement life table analysis revealed that natural factors alone accounted for the major mortality (67.56%) from bud to pod (IV) stage during the entire season.

Comparison of insecticides between pest and parasitoids showed that malathion, fenvalerate and decamethrin were good candidates for the protection of *A. etiellae isolatus*, *B. cajani* and *B. thurberiophilae* while causing high mortality to *A. stercorea*.