Quasars are defined by their spectra which show the unusual characteristic of having emission lines being shifted from their expected positions. In the past, this shift has always been interpreted as being towards the red end of the spectrum, that is, they were redshifted, as a consequence of the expansion of the universe. As such, all conditions used to explain the physical distribution and characteristics of quasars have been proposed with this theory in mind. However, with the advances in technology and data analysis methods, a number of the already known quasars have been shown to have anomalous spectral features which cannot be fully explained under the redshift interpretation. Researchers have thus been prompted to develop alternative theories to explain these results. One such theory is in terms of blueshifts or the shift of the spectral lines towards the blue end.

This paper aims to address three such cases of quasars exhibiting anomalous features which cannot be explained under the redshift theory. HE 0141-3932 is a bright blue radio-quiet quasar with an unusually weak Lyα emission line and a large redshift difference of 0.05 amongst its emission lines; 2QZJ 215454.3-305654 is a source exhibiting two emission lines and no radio and/or X-ray emission lines and QQQ1432-0106 has three components - A, B and C, each with differing spectral features but one redshift value. All three quasars have been re-analysed in terms of blueshifts and, with the exception of the third component of QQQ1432-0106, have yielded corresponding values of 0.578, 0.713, 0.543 and 0.543 respectively without the need to introduce unusual situations to interpret the spectra. Therefore the blueshift theory can be used to adequately explain the features of at least a fraction of the quasars where redshifts cannot.